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Abstract. In multi-instance learning, the training set comprises labeled bags that are composed of unlabeled
instances, and the task is to predict the labels of unseen bags. In this paper, a web mining problem, i.e. web index
recommendation, is investigated from a multi-instance view. In detail, each web index page is regarded as a bag,
while each of its linked pages is regarded as an instance. A user favoring an index page means that he or she is
interested in at least one page linked by the index. Based on the browsing history of the user, recommendation could
be provided for unseen index pages. An algorithm named Fretcit-kNN, which employs the Minimal Hausdorff
distance between frequent term sets and utilizes both the references and citers of an unseen bag in determining
its label, is proposed to solve the problem. Experiments show that in average the recommendation accuracy of
Fretcit-kNN is 81.0% with 71.7% recall and 70.9% precision, which is significantly better than the best algorithm
that does not consider the specific characteristics of multi-instance learning, whose performance is 76.3% accuracy
with 63.4% recall and 66.1% precision.
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1. Introduction

At present, roughly speaking, there are three frame-
works for learning from examples [1]. That is, super-
vised learning, unsupervised learning, and reinforce-
ment learning. Supervised learning attempts to learn a
concept for correctly labeling unseen examples, where
the training examples are with labels. Unsupervised
learning attempts to learn the structure of the underly-
ing sources of examples, where the training examples
are with no labels. Reinforcement learning attempts to
learn a mapping from states to actions, where the ex-
amples are with no labels but with delayed rewards that
could be viewed as delayed labels.

In investigating the problem of drug activity predic-
tion, Dietterich et al. [2] proposed the notion of multi-
instance learning, where the training set is composed
of many bags each containing many instances. A bag
is positively labeled if it contains at least one positive
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instance. Otherwise it is labeled as a negative bag. The
task is to learn some concept from the training set for
correctly labeling unseen bags. Such a task is quite diffi-
cult because although the labels of the training bags are
known, that of the training instances are not available.
It has been shown that learning algorithms ignoring
the characteristics of multi-instance problems, such as
popular decision trees and neural networks, could not
work well in this scenario [2].

Since multi-instance problems extensively exist but
they are unique to those addressed by previous learning
frameworks, multi-instance learning is regarded as a
new learning framework [1], and has attracted much
attention of the machine learning community.

In this paper, a specific web mining task, i.e. rec-
ommending web index pages based on user behavior,
is studied. Experiments show that when the problem
is regarded as a traditional supervised learning prob-
lem, the performance of the best learning algorithm in-
vestigated is about 76.3% accuracy with 63.4% recall
and 66.1% precision. However, if this problem is re-
garded as a multi-instance problem, significantly better
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solution could be obtained. In fact, this paper proposes a
multi-instance learning algorithm named Fretcit-kNN,
i.e. FREquent Terms based CITation-kNN, to solve
the web index recommendation problem and achieves
about 81.0% accuracy with 71.7% recall and 70.9%
precision.

The rest of this paper is organized as follows. Sec-
tion 2 introduces multi-instance learning. Section 3
describes the problem of web index recommenda-
tion. Section 4 presents Fretcit-kNN and its variant.
Section 5 reports the experiments. Finally, Section 6
summarizes the main contributions of this paper and
raises several issues for future work.

2. Multi-Instance Learning

In the middle of 1990s, Dietterich et al. [2] investigated
the problem of drug activity prediction. The goal was to
endow learning systems with the ability of predicting
that whether a new molecule was qualified to make
some drug, through analyzing a collection of known
molecules.

Most drugs are small molecules working by bind-
ing to larger protein molecules such as enzymes and
cell-surface receptors. For molecules qualified to make
a drug, one of its low-energy shapes could tightly
bind to the target area. While for molecules unqual-
ified to make a drug, none of its low-energy shapes
could tightly bind to the target area. The main difficulty
of drug activity prediction lies in that each molecule
may have many alternative low-energy shapes, but bio-
chemists only know that whether a molecule is qualified
to make a drug or not, instead of knowing that which
of its alternative low-energy shapes responses for the
qualification.

An intuitive solution is to utilize supervised learn-
ing algorithms by regarding all the low-energy shapes
of the ‘good’ molecules as positive training examples,
while regarding all the low-energy shapes of the ‘bad’
molecules as negative training examples. However, as
shown by Dietterich et al. [2], such a method can hardly
work due to high false positive noise, which is caused
by that a ‘good’ molecule may have hundreds of low-
energy shapes but maybe only one of them is really a
‘good’ shape. In order to solve this problem, Dietterich
et al. [2] regarded each molecule as a bag, and regarded
the alternative low-energy shapes of the molecule as the
instances in the bag, thereby formulated multi-instance
learning.

The PAC-learnability of multi-instance learning has
been studied by many researchers. Long and Tan [3]
showed that if the instances in the bags are indepen-
dently drawn from product distribution, then the APR
(Axis-Parallel Rectangle) proposed by Dietterich et al.
[2] is PAC-learnable. Auer et al. [4] showed that if
the instances in the bags are not independent then
APR learning under the multi-instance learning frame-
work is NP-hard. Moreover, they presented a theoreti-
cal algorithm that does not require product distribution,
which was transformed to a practical algorithm named
MULTINST later [5]. Blum and Kalai [6] described a
reduction from PAC-learning under the multi-instance
learning framework to PAC-learning with one-sided
random classification noise. They also presented a the-
oretical algorithm with smaller sample complexity than
that of Auer et al.’s algorithm [4].

A representative practical multi-instance learning al-
gorithm is Diverse Density proposed by Maron and
Lozano-Pérez [7]. Intuitively, diverse density at a point
in the feature space is defined to be a measure of how
many different positive bags have instances near that
point, and how far the negative instances are from that
point. Thus, the task of multi-instance learning is trans-
formed to search for a point in the feature space with the
maximum diverse density. The Diverse Density algo-
rithm has been applied to several applications including
natural scene classification [8], stock selection [7], and
content-based image retrieval [9].

There are also many other practical multi-instance
learning algorithms, such as Wang and Zucker’s ex-
tended k-nearest neighbor algorithms [10], Ruffo’s
multi-instance decision tree Relic [11], Chevaleyre and
Zucker’s multi-instance decision tree ID3-MI and rule
inducer RIPPER-MI [12], Zhou and Zhang’s multi-
instance neural network BP-MIP [13], and Zhang and
Goldman’s EM-DD [14]. The EM-DD algorithm has
been applied to content-based image retrieval [15]. Re-
cently, Zhou and Zhang obtained the best result up to
now on the benchmark test of multi-instance learning
with EM-DD ensembles [16].

In the early years of the research of multi-instance
learning, most work were on multi-instance classifi-
cation with discrete-valued outputs. Recently, multi-
instance regression with real-valued outputs begins to
attract the attention of some researchers. Ray and Page
[17] showed that the general formulation of the multi-
instance regression task is NP-hard, and proposed an
EM-based multi-instance regression algorithm. Amar
et al. [18] extended the Diverse Density algorithm for
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multi-instance regression, and designed some method
for artificially generating multi-regression data.

It is worth mentioning that multi-instance learning
has even attracted the attention of the ILP community.
De Raedt [19] showed that multi-instance problems
could be regarded as a bias on inductive logic pro-
gramming. He also suggested that the multi-instance
paradigm could be the key between the propositional
and relational representations, being more expressive
than the former, and much easier to learn than the latter.
Zucker and Ganascia [20, 21] presented REPEAT, an
ILP system based on an ingenious bias which firstly re-
formulated the relational examples in a multi-instance
database, and then induced the final hypothesis with a
multi-instance learner.

3. Web Index Recommendation

There are diverse web pages on the Internet, among
which some pages contain plentiful information but
themselves only provide titles or brief summaries while
leaving the detailed presentation to their linked pages.
These web pages are called web index pages. For exam-
ple, the entrance of NBA at Yahoo! (sports.yahoo.com/
nba/) is a web index page.

Every day a web user may encounter many web in-
dex pages. Some of these pages may contain issues
interesting to the user while some may not. It is nice
if these pages could be automatically analyzed so that

Figure 1. The web index page is regarded as a bag, while its linked pages are regarded as the instances in the bag.

only the index pages containing interesting issues are
presented to the user. That is, through analyzing the
web index pages that the user has browsed, try to iden-
tify whether a new web index page will interest the user
or not. This problem is called web index recommenda-
tion, which is a specific web usage mining task, and the
solution to the problem may be helpful for developing
user-adaptive intelligent web browsers. Here the diffi-
culty lies in that the user only specifies whether he or
she is interested in an index page, instead of specifying
the concrete links that he or she is really interested in.

This problem could be viewed as a multi-instance
problem. Now the goal is to label unseen web index
pages as positive or negative. A positive web index
page is such a page that the user is interested in at least
one of its linked pages. A negative web index page
is such a page that none of its linked pages interested
the user. Thus, each index page could be regarded as
a bag while its linked pages could be regarded as the
instances in the bag. For illustration, Fig. 1 shows a bag
and two of its instances.

For simplifying the analysis, this paper only fo-
cuses on the hypertext information on the pages while
neglecting other hypermedia such as images, audios,
videos, etc. Then, each instance can be represented
by a term vector T = [t1, t2, . . . , tn], where ti (i =
1, 2, . . . , n) is one of the n most frequent terms appear-
ing in the corresponding linked page. T could be ob-
tained by pre-accessing the linked page and then count-
ing the occurrence of different terms. Note that some
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trivial terms such as ‘a’, ‘the’, ‘is’, are neglected in this
process. In this paper, all the pages are described by the
same number of frequent terms, i.e. the length of any
term vectors are the same. However, for term vectors
corresponding to different instances, even though their
length is the same, their components may be quite dif-
ferent. Moreover, for different bags, since their corre-
sponding web index pages may contain different num-
ber of links, the number of instances in the bags may
be different.

Thus, a web index page linking to m pages, i.e.
a bag containing m instances, can be represented
as {[t11, t12, . . . , t1n], [t21, t22, . . . , t2n], . . . , [tm1, tm2

, . . . , tmn]}. The label of the bag is positive if the web
index page interested the user. Otherwise the label is
negative.

Note that the web index pages may contain many
links to advertisements or other index pages, which
may baffle the analysis. In this paper it is constrained
that for a linked page to be considered as an instance
in a bag, its corresponding link in the index page must
contain at least four terms. It is surprising that such a
simple strategy helps remove most useless links.

4. Fretcit-kNN and Its Variant

kNN, i.e. k-nearest neighbor [22], is a popular lazy
learning algorithm [23], which labels an unseen exam-
ple with the label holding by majority of its k nearest
neighboring training examples. Dietterich et al. [24]
have shown that standard kNN with Euclidean dis-
tance or Tangent distance could hardly be used to solve
the drug discovery problem. In order to adapt kNN to
multi-instance problems, Wang and Zucker [10] em-
ployed modified Hausdorff distance [25] to measure
the neighboring distances between numerical objects.

By definition, two sets A and B are within Hausdorff
distance d of each other if and only if every object of
A is within distance d of at least one object of B, and
every object of B is within distance d of at least one
object of A. Formally, the Hausdorff distance between
A and B is defined as Eq. (1), where ‖a − b‖ is the
Euclidean distance between a and b.

H(A, B) = Max
{

Max
a∈A

Min
b∈B

‖a − b‖, Max
b∈B

Min
a∈A

‖b − a‖
}

(1)

Since the standard Hausdorff distance is very sensitive
to outliers, Wang and Zucker [10] defined the Minimal

Hausdorff distance as Eq. (2).

minH (A, B) = Min
a∈A, b∈B

‖a − b‖ (2)

Wang and Zucker [10] also suggested taking into ac-
count not only the neighbors of a bag A, i.e. A’s refer-
ences, but also the bags that count A as a neighbor, i.e.
A’s citers. The R-nearest references of bag A are de-
fined as the R-nearest neighbors of A. The C-nearest
citers of A are defined as the bags that regard A as
their C-nearest neighbors. The label of an unseen bag
is determined by majority voting among its R-nearest
references and C-nearest citers. If tie appears, the bag
is labeled as negative.

It is obvious that since both the standard Hausdorff
distance and the Minimal Hausdorff distance employ
Euclidean distance, they can only be applied to numer-
ical objects, i.e. instances described by only numerical
attributes. However, in the problem of web index rec-
ommendation, the instances are described by unordered
attributes whose possible values are textual frequent
terms. Therefore new distance measure must be devel-
oped for the web index recommendation problem.

For two sets of frequent terms A and B each contain-
ing n terms, i.e. {a1, a2, . . . , an} and {b1, b2, . . . , bn},
an intuitive way to measure their similarity is to count
the number of shared terms. The more the shared
terms, the bigger the similarity. For example, suppose
A = {red, white, yellow}, B = {black, red, yellow},
and C = {gray, green, yellow}. It is obvious that A is
more similar to B than to C because the number of
terms shared by A and B, i.e. 2, is bigger than that
shared by A and C , i.e. 1.

Based on this heuristics, the Minimal Hausdorff dis-
tance between frequent term sets can be defined as
Eq. (3).

fret-minH (A, B) = Min
a∈A, b∈B


1 −

n∑
i, j=1
ai =b j

1

n


 (3)

Through employing fret-minH(·) to measure the neigh-
boring distance between bags, and utilizing both the
references and the citers of an unseen bag in determin-
ing its label, the Fretcit-kNN algorithm is obtained. It
is evident that such an algorithm can be applied to the
problem of web index page recommendation.

During counting the occurrence of different terms
in the linked pages, the frequency of the terms can
be obtained, which can be used to rank the frequent
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terms. This rank information could also be utilized in
measuring the distances between bags.

For example, suppose A = {red, white, yellow},
B = {black, red, pink}, and C = {gray, green, red},
where the terms have been ranked according to the de-
scending order of their frequencies. If fret-minH(·) is
used to measure the distance, then B and C are equally
close to A because each of them shares one term with
A. However, from intuition, A should be more similar
to B than to C because the shared term, i.e. red, is the
2nd frequent term of B while is only the 3rd frequent
term of C .

Based on this heuristics, the Minimal Hausdorff
distance between ranked frequent term sets can be
defined as Eq. (4), where Rank(·) is a function re-
turning the normalized rank of a term. For exam-
ple, Rank(red) is 0.53(= 2/(32 + 22 + 12)1/2) for
{black, red, pink} while is 0.27(= 1/(32 + 22 + 12)1/2)
for {gray, green, red}. If several terms are with the same
frequency, then the average rank are used. For example,
suppose the frequency of black and red are the same
for {black, red, pink}, then Rank(black) = Rank (red)
= 0.68(= [(32 + 22) × 0.5/(32 + 22 + 12)]1/2).

r-fret-minH(A, B)

= Min
a∈A, b∈B


1 −

n∑
i, j=1
ai =b j

Rank (ai ) Rank (b j )


 (4)

Through replacing fret-minH(·) with r-fret-minH(·),
a variant of Fretcit-kNN, i.e. r-Fretcit-kNN, is obtained.
It is obvious that such an algorithm can also be applied
to the problem of web index page recommendation.

5. Experiments

5.1. Data and Methodology

113 web index pages are collected and then labeled
by nine volunteers according to their interests, which
results in nine experimental data sets. Note that since
every index page may have lots of linked pages, the data
sets are rather big. In fact there are 3,423 linked pages in
total, and the volume for storage is 126 Mb (30.9 Mb
after compression). For each data set, 75 web index
pages are randomly selected as training bags while the
remaining 38 index pages are used as test bags. The
number of positive and negative bags in the data sets is
tabulated in Table 1.

Table 1. Experimental data sets.

Training set Test set

Data set Positive Negative Positive Negative

V1 17 58 4 34

V2 18 57 3 35

V3 14 61 7 31

V4 56 19 33 5

V5 62 13 27 11

V6 60 15 29 9

V7 39 36 16 22

V8 35 40 20 18

V9 37 38 18 20

The bags are composed of different number of
instances. The biggest bag comprises 200 instances,
while the smallest one comprises only 4 instances.
In average, each bag contains 30.29 (3,423/113)
instances. The data sets are publicly available at
http://cs.nju.edu.cn/people/zhouzh/zhouzh.files/publi-
cation/annex/milweb-data.rar.

In the experiments, the accuracy of recommenda-
tion is measured. Moreover, since the data sets con-
tain different number of positive and negative bags, the
recall and precision of the recommendation are also
measured.

Suppose there are P positive bags and N negative
bags in the test set, among which Pa positive bags are
recommended while Pr positive bags are rejected, and
Na negative bags are recommended while Nr negative
bags are rejected. It is obvious that P = Pa + Pr ,
N = Na + Nr . Then, the accuracy, recall, and precision
are defined as Eqs. (5) to (7), respectively.

accuracy = Pa + Nr

P + N
(5)

recall = Pa

P
(6)

precision = Pa

Pa + Na
(7)

Moreover, for the convenience of the presentation of
the experimental results, two other measures, i.e. error
and error ratio, are used. The error is defined as Eq. (8).
Suppose the error of algorithms A and B are errorA and
errorB respectively, then the error ratio of algorithm A
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against algorithm B is defined as Eq. (9).

error = 1 − accuracy (8)

ratioA/B = errorA

errorB
(9)

For each data set, 5, 8, 10, 12, and 15 frequent terms
are used to describe the instances, respectively. In or-
der to show the overall performance of an algorithm
on different data sets, the geometrical mean, i.e. aver-
age value across all data sets, of accuracy, recall, and
precision are also provided besides the results on each
data set.

5.2. Comparing Txt-kNN and Cit-kNN
with Fretcit-kNN

At first, experiments are performed to evaluate the per-
formance of Fretcit-kNN on the web index recommen-
dation problem. Since Fretcit-kNN is an extended kNN
algorithm that considers the characteristics of multi-
instance problems, for comparison, two extended kNN
algorithms that do not consider the characteristics of
multi-instance problems are also evaluated.

The first compared algorithm is obtained through
adapting the standard kNN algorithm to textual ob-
jects. Recall that the standard kNN algorithm utilizes
Euclidean distance to measure the distance between ex-
amples, which disable it be applied to objects described
by textual frequent terms. However, if the distance met-
ric is replaced by fret-minH(·), then the modified algo-
rithm can be easily applied to textual objects. Here the
modified algorithm is called Txt-kNN.

The main difference between Txt-kNN and Fretcit-
kNN is that the latter is a multi-instance learning al-
gorithm while the former is a single-instance learn-
ing algorithm, that is, the former algorithm regards all
the instances in a bag have the label of that bag. For
example, all the instances of a positive bag are regarded
as positive instances by Txt-kNN. In prediction, the
unseen bag is positively labeled if at least one of its
instances are predicted as a positive instance. Another
difference between Txt-kNN and Fretcit-kNN is that
the former considers only the references of an unseen
object in prediction while the latter considers both the
references and the citers.

The second compared algorithm is obtained by en-
abling Txt-kNN consider both the references and the
citers of an unseen object in prediction. Note that it is
still a single-instance learning algorithm which regards
all the instances in a bag have the label of that bag. In

order to distinguish it with the multi-instance learn-
ing algorithm that was designed for numerical objects,
i.e. Citation-kNN [10], here this algorithm is called
Cit-kNN.

Moreover, a classical information retrieval tech-
nique, i.e. TFIDF [26], is also evaluated on the data
sets through regarding all the instances in a bag have
the label of that bag, which provides a baseline for the
comparison. Note that in principle the TFIDF, Txt-kNN
and Cit-kNN algorithms can be directly applied to the
web index pages while ignoring their linked pages. But
since most information of the index pages are delivered
by their linked pages, the corresponding performance
is very poor, which is not presented in this paper.

In the experiments the number of references and
citers in consideration by both Cit-kNN and Fretcit-
kNN are set to 2 and 4, respectively, because in Wang
and Zucker’s work the best performance of Citation-
kNN was obtained under such a configuration [10].
The error ratios of Txt-kNN, Cit-kNN and Fretcit-kNN
against TFIDF are depicted in Fig. 2, while the detailed
experimental results are tabulated in the Appendix.

Figure 2 and Tables 2 to 6 show that the recom-
mendation quality of Fretcit-kNN is always better than
that of the compared algorithms, when 5, 10, 12, or
15 frequent terms are used to describe the instances.
When 8 frequent terms are used, the recommendation
quality of Fretcit-kNN is still better than that of TFIDF
and Txt-kNN, but comparable to that of Cit-kNN. This
might because that the influence of the number of fre-
quent terms on the performance of the extended kNN
algorithms are not synchronous. In fact, when 8 fre-
quent terms are used, Cit-kNN reaches its best per-
formance while Fretcit-kNN obtains its worst perfor-
mance, which results in their comparable recommen-
dation quality.

Pairwise two-tailed t-tests on the nine data sets in-
dicate that the recommendation quality of Fretcit-kNN
is significantly better than that of the other compared
algorithms. In fact, if the geometrical mean of the cor-
responding ‘GM’ values in Tables 2 to 6 are computed
across all number of frequent terms, it could be found
that the overall performance of Fretcit-kNN is 81.0%
accuracy with 71.7% recall and 70.9% precision, which
is significantly better than the performance of TFIDF
(75.0% accuracy with 62.7% recall and 64.2% pre-
cision), Txt-kNN (72.4% accuracy with 78.6% recall
and 56.1% precision), and Cit-kNN (75.8% accuracy
with 61.9% recall and 63.8% precision). It is evident
that these results well support the claim that if the
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Figure 2. Comparison of error ratios of Txt-kNN, Cit-kNN and
Fretcit-kNN.

multi-instance nature of the web index recommenda-
tion problem is considered, then better solution could
be achieved.

Note that the recall of Txt-kNN seems better than
that of Fretcit-kNN, which is very misleading. This
phenomenon is caused by the fact that the Txt-kNN
algorithm has high chances to believe that an unseen
bag is a positive bag, because it regards all instances
in positive training bags as positive instances, and
positively labels an unseen bag as long as it positively
labels an unseen instance. In other words, although

more positive bags are ‘accepted’, far more negative
bags that should be ‘rejected’ are also ‘accepted’. Thus,
the cost of the improvement of recall is the serious dete-
rioration of precision, which leads to its poor accuracy.

It is also worth noting that although Cit-kNN works
in a similar way as Txt-kNN does, that is, regards all
instances in positive training bags as positive instances
and positively labels an unseen bag as long as an unseen
instance is positively labeled, its recall is not so mis-
leadingly high and its precision seems have not been
sacrificed as that of Txt-kNN. This is because Cit-kNN
employs both the references and the citers in labeling
an unseen bag, which greatly reduces the chances of
wrongly labeling a negative bag as positive. In fact,
both the accuracy and precision of Cit-kNN are signif-
icantly better than that of Txt-kNN.

5.3. Comparing r-Txt-kNN and r-Cit-kNN
with r-Fretcit-kNN

Then, experiments are performed to evaluate the per-
formance of r-Fretcit-kNN on the web index recom-
mendation problem. Since r-Fretcit-kNN is an ex-
tended kNN algorithm that considers both the rank
information of the frequent terms and the character-
istics of multi-instance problems, for comparison, two
extended kNN algorithms that consider the rank in-
formation of the frequent terms but do not consider
the characteristics of multi-instance problems are also
evaluated.

The compared algorithms, i.e. r-Txt-kNN and r-Cit-
kNN, are obtained by replacing the distance metric used
by Txt-kNN and Cit-kNN with r-fret-minH(·). Note that
both of them are single-instance learning algorithms,
which regards all the instances in a bag have the label
of that bag. The error ratios of r-Txt-kNN, r-Cit-kNN
and r-Fretcit-kNN against TFIDF are depicted in Fig. 3,
while the detailed experimental results are tabulated in
the Appendix.

Figure 3 and Tables 2 to 6 show that the recommen-
dation quality of r-Fretcit-kNN is always better than
that of the compared algorithms, no matter how many
frequent terms are used to describe the instances.

Pairwise two-tailed t-tests on the nine data sets indi-
cate that the recommendation quality of r-Fretcit-kNN
is significantly better than that of the other compared
algorithms. In fact, if the geometrical mean of the cor-
responding ‘GM’ values in Tables 2 to 6 are computed
across all number of frequent terms, it could be found
that the overall performance of r-Fretcit-kNN is 80.4%
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Figure 3. Comparison of error ratios of r-Txt-kNN, r-Cit-kNN and
r-Fretcit-kNN.

accuracy with 71.6% recall and 71.5% precision, which
is significantly better than the performance of TFIDF
(75.0% accuracy with 62.7% recall and 64.2% preci-
sion) and r-Txt-kNN (73.6% accuracy with 74.7% re-
call and 57.0% precision). It is also significantly bet-
ter than the best single-instance learning algorithm,
i.e. r-Cit-kNN, whose performance is 76.3% accuracy
with 63.4% recall and 66.1% precision. It is evident
that these results well support the claim that if the
multi-instance nature of the web index recommenda-
tion problem is considered, then better solution could
be achieved.

Note that the recall of r-Txt-kNN seems better than
that of r-Fretcit-kNN, which is very misleading. The
explanation for this phenomenon is the same as that
has been discussed in Section 5.2.

5.4. Comparing Fretcit-kNN with r-Fretcit-kNN

Sections 5.2 and 5.3 have shown that both Fretcit-kNN
and r-Fretcit-kNN are significantly better than their
single-instance counterworkers. Then, it is interesting
to see which one of them is better for the web index
recommendation problem.

In fact, if the geometrical mean of the correspond-
ing ‘GM’ values of Fretcit-kNN and r-Fretcit-kNN in
Tables 2 to 6 are computed across all number of fre-
quent terms, it could be found that the overall perfor-
mance of Fretcit-kNN is 81.0% accuracy with 71.7%
recall and 70.9% precision while that of r-Fretcit-kNN
is 80.4% accuracy with 71.6% recall and 71.5% pre-
cision. It is obvious that the performance of these two
algorithms are very comparable.

The geometrical mean accuracies of Fretcit-kNN and
r-Fretcit-kNN under different number of frequent terms
that are used to describe the instances are depicted in
Fig. 4, which shows that the increase of the number of
frequent terms does not necessarily bring improvement
because the accuracies of both algorithms deteriorate
when the number of frequent terms increases from 5 to
8. This is not strange since for two representations, the
better one for learning might not be the longer one.

It is worth noting that r-Fretcit-kNN has utilized
more information than Fretcit-kNN does but its per-
formance is not better than that of Fretcit-kNN. In
fact, it could be found that although introducing the
rank information of the frequent terms has improved

Figure 4. Comparison of geometrical mean accuracies of Fretcit-
kNN and r-Fretcit-kNN.
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Txt-kNN with 1.2% accuracy and Cit-kNN with 0.5%
accuracy, it deteriorates Fretcit-kNN with 0.6% accu-
racy. In detail, Fig. 4 reveals that when there are fewer
frequent terms, such as 5 or 8 or 10, the accuracy of
r-Fretcit-kNN is comparable to that of Fretcit-kNN, but
when there are more frequent terms, such as 12 or 15,
the performance of Fretcit-kNN becomes apparently
better than that of r-Fretcit-kNN. Exploring why the in-
crease of the number of frequent terms benefits Fretcit-
kNN much more than r-Fretcit-kNN might be helpful
for developing better algorithms, which is an important
issue to study in the future.

6. Conclusion

This paper describes the first attempt of applying multi-
instance learning techniques to web mining, which
exhibits a new way to the solution of web mining tasks.
In detail, the problem of web index recommendation
is considered as a multi-instance problem by regard-
ing index pages as bags while their linked pages as
instances. This problem is then solved by extended
kNN algorithms that employ the Minimal Hausdorff
distance between ranked or unranked frequent term sets
and utilize both the references and citers of an unseen
bag in determining its label. More importantly, this pa-
per shows that considering the multi-instance nature of
such a problem is beneficial to the design of algorithms
attaining good results.

Table 2. Detailed experimental results when 5 frequent terms are used to describe the instances.

Txt-kNN Cit-kNN Fretcit-kNN

Data set Accu. Recall Preci. Accu. Recall Preci. Accu. Recall Preci.

V1 .895 .250 .500 .868 .250 .333 .921 .500 .667

V2 .737 .667 .182 .842 .667 .286 .921 .667 .500

V3 .632 .571 .267 .632 .286 .182 .868 .571 .667

V4 .868 .970 .889 .921 .939 .969 .895 .939 .939

V5 .711 1.00 .711 .789 .815 .880 .895 1.00 .871

V6 .816 1.00 .806 .895 .966 .903 .816 .897 .867

V7 .579 .688 .500 .605 .500 .533 .658 .625 .588

V8 .553 .800 .552 .579 .550 .611 .658 .650 .684

V9 .632 .556 .625 .632 .389 .700 .658 .556 .667

GM .714 .722 .559 .751 .596 .600 .810 .712 .717

(Continued on next page.)

In the presented work, only the whole web in-
dex pages could be recommended. That is, the pro-
posed algorithms could only predict that whether a
new web index page may interest the user or not.
To develop some mechanism to locate the concrete
linked pages that interested the user is an interest-
ing issue for future work. Moreover, experiments re-
ported in this paper show that the increase of the num-
ber of frequent terms used to describe the web pages
benefits Fretcit-kNN much more than r-Fretcit-kNN.
Exploring the reason for this phenomenon might be
helpful for developing better algorithms, which is an-
other interesting issue for future work. Furthermore,
algorithms presented in this paper employ variants of
Hausdorff distance to measure the distance between
different objects. It may be possible to extend the
algorithms through adopting other kinds of distance
measures so that numerical attributes, ordered discrete
attributes and unordered discrete attributes could be
processed together, therefore the resulted algorithms
could be applied to more tasks besides web index
recommendation.

Appendix

Tables 2 to 6 present the detailed experimental results
discussed in Section 5. In the tables ‘Accu.’ denotes
accuracy, ‘Preci.’ denotes precision, and ‘GM’ denotes
geometrical mean.
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Table 2. (Continued).

TFIDF r-Txt-kNN r-Cit-kNN r-Fretcit-kNN

Accu. Recall Preci. Accu. Recall Preci. Accu. Recall Preci. Accu. Recall Preci.

.816 .788 1.00 .895 .500 .500 .921 .500 .667 .921 .500 .667

.868 .852 .958 .842 .333 .200 .842 .667 .286 .868 .667 .333

.763 .793 .885 .789 .286 .400 .816 .143 .500 .868 .714 .625

.789 .000 .000 .868 1.00 .868 .842 .909 .909 .816 .879 .906

.895 .333 .333 .737 .889 .774 .632 .630 .810 .842 1.00 .818

.763 .429 .375 .763 1.00 .763 .816 .966 .824 .816 .931 .844

.842 .688 .917 .605 .750 .522 .632 .563 .563 .737 .688 .688

.474 .850 .500 .579 .650 .591 .605 .600 .632 .684 .600 .750

.605 .350 .778 .395 .667 .414 .553 .500 .529 .763 .556 .909

.757 .565 .638 .719 .675 .559 .740 .609 .636 .813 .726 .727

Table 3. Detailed experimental results when 8 frequent terms are used to describe the instances.

Txt-kNN Cit-kNN Fretcit-kNN

Data set Accu. Recall Preci. Accu. Recall Preci. Accu. Recall Preci.

V1 .868 .500 .400 .895 .500 .500 .895 .500 .500

V2 .816 1.00 .300 .763 .667 .200 .868 .667 .333

V3 .763 .429 .375 .816 .429 .500 .842 .571 .571

V4 .895 .970 .914 .789 .848 .903 .789 .788 .963

V5 .711 .963 .722 .789 .852 .852 .842 .963 .839

V6 .816 1.00 .806 .789 .897 .839 .842 .966 .848

V7 .605 .875 .519 .789 .813 .722 .763 .813 .684

V8 .579 .850 .567 .789 .800 .800 .632 .600 .667

V9 .553 .833 .517 .632 .333 .750 .605 .333 .667

GM .734 .824 .569 .783 .682 .674 .786 .689 .675

TFIDF r-Txt-kNN r-Cit-kNN r-Fretcit-kNN

Accu. Recall Preci. Accu. Recall Preci. Accu. Recall Preci. Accu. Recall Preci.

.816 .788 1.00 .816 .500 .286 .816 .250 .200 .895 .500 .500

.868 .852 .958 .711 .333 .100 .842 1.00 .333 .789 .667 .222

.816 .793 .958 .711 .143 .167 .868 .429 .750 .868 .714 .625

.816 .500 .286 .895 .970 .914 .868 .939 .912 .842 .879 .935

.632 .333 .077 .763 .926 .781 .684 .704 .826 .816 .963 .813

.684 .429 .273 .816 1.00 .806 .842 .966 .848 .737 .897 .788

.684 .813 .591 .605 .750 .522 .632 .688 .550 .763 .750 .706

.605 .600 .632 .605 .700 .609 .684 .750 .682 .711 .655 .765

.632 .650 .650 .526 .722 .500 .658 .556 .667 .684 .444 .800

.728 .640 .603 .716 .672 .521 .766 .698 .641 .789 .719 .684
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Table 4. Detailed experimental results when 10 frequent terms are used to describe the instances.

Txt-kNN Cit-kNN Fretcit-kNN

Data set Accu. Recall Preci. Accu. Recall Preci. Accu. Recall Preci.

V1 .842 .250 .250 .895 .250 .500 .895 .500 .500

V2 .816 1.00 .300 .684 .333 .091 .842 .667 .286

V3 .789 .429 .429 .842 .429 .600 .842 .571 .571

V4 .921 1.00 .917 .816 .848 .933 .842 .848 .966

V5 .737 .926 .758 .737 .852 .793 .842 .963 .839

V6 .789 1.00 .784 .789 .897 .839 .868 .966 .875

V7 .526 .563 .450 .658 .625 .588 .789 .750 .750

V8 .421 .550 .458 .632 .600 .667 .711 .655 .765

V9 .474 .611 .458 .605 .278 .714 .632 .444 .667

GM .702 .703 .534 .740 .568 .636 .807 .707 .691

TFIDF r-Txt-kNN r-Cit-kNN r-Fretcit-kNN

Accu. Recall Preci. Accu. Recall Preci. Accu. Recall Preci. Accu. Recall Preci.

.816 .788 1.00 .895 .500 .500 .868 .500 .400 .895 .500 .500

.868 .852 .958 .816 1.00 .300 .868 .667 .333 .842 .667 .286

.816 .793 .958 .789 .286 .400 .842 .143 1.00 .868 .714 .625

.895 .500 .500 .895 .970 .914 .868 .909 .938 .816 .848 .933

.684 .333 .091 .737 .926 .758 .658 .667 .818 .842 1.00 .818

.711 .429 .300 .816 1.00 .806 .816 .931 .844 .789 .931 .818

.737 .813 .650 .632 .813 .542 .737 .688 .688 .816 .813 .765

.684 .750 .682 .553 .650 .565 .711 .650 .765 .711 .600 .800

.632 .700 .636 .605 .778 .560 .579 .333 .600 .684 .333 1.00

.760 .662 .642 .749 .769 .594 .772 .610 .710 .807 .712 .727

Table 5. Detailed experimental results when 12 frequent terms are used to describe the instances.

Txt-kNN Cit-kNN Fretcit-kNN

Data set Accu. Recall Preci. Accu. Recall Preci. Accu. Recall Preci.

V1 .816 .250 .200 .868 .250 .333 .921 .750 .600

V2 .816 1.00 .300 .789 .667 .222 .842 .667 .286

V3 .763 .571 .400 .789 .429 .429 .868 .714 .625

V4 .921 1.00 .917 .789 .788 .963 .816 .848 .933

V5 .789 1.00 .771 .658 .741 .769 .789 .889 .828

V6 .789 1.00 .784 .789 .931 .818 .895 .966 .903

V7 .526 .688 .458 .632 .625 .556 .763 .563 .818

V8 .579 .600 .600 .632 .450 .750 .711 .650 .765

V9 .553 .778 .519 .737 .500 .900 .711 .556 .769

GM .728 .765 .550 .743 .598 .638 .813 .734 .725

(Continued on next page.)
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Table 5. (Continued).

TFIDF r-Txt-kNN r-Cit-kNN r-Fretcit-kNN

Accu. Recall Preci. Accu. Recall Preci. Accu. Recall Preci. Accu. Recall Preci.

.816 .788 1.00 .868 .250 .333 .816 .250 .200 .895 .500 .500

.842 .815 .957 .737 1.00 .231 .842 .667 .286 .842 .667 .286

.816 .793 .958 .763 .429 .375 .816 .286 .500 .868 .714 .625

.789 .500 .250 .895 .970 .914 .895 .939 .939 .842 .848 .966

.684 .333 .091 .737 .926 .758 .658 .667 .818 .737 .852 .793

.711 .571 .333 .816 1.00 .806 .789 .931 .818 .816 .966 .824

.842 .688 .917 .658 .875 .560 .684 .688 .611 .737 .688 .688

.737 .800 .727 .632 .750 .625 .711 .700 .737 .763 .700 .824

.579 .550 .611 .605 .667 .571 .711 .444 .889 .684 .389 .875

.757 .649 .649 .746 .763 .575 .769 .619 .644 .798 .703 .709

Table 6. Detailed experimental results when 15 frequent terms are used to describe the instances.

Txt-kNN Cit-kNN Fretcit-kNN

Data set Accu. Recall Preci. Accu. Recall Preci. Accu. Recall Preci.

V1 .895 1.00 .500 .868 .250 .333 .921 .750 .600

V2 .789 1.00 .273 .763 .667 .200 .868 .667 .333

V3 .684 .857 .353 .737 .429 .333 .868 .571 .667

V4 .842 .939 .886 .763 .758 .962 .895 .909 .968

V5 .711 1.00 .711 .816 .889 .857 .895 .963 .897

V6 .763 1.00 .763 .816 .931 .844 .895 .966 .903

V7 .526 .750 .462 .737 .750 .667 .816 .750 .800

V8 .816 .850 .810 .789 .750 .833 .737 .650 .813

V9 .632 .833 .577 .658 .444 .727 .632 .444 .667

GM .740 .914 .593 .772 .652 .640 .836 .741 .739

TFIDF r-Txt-kNN r-Cit-kNN r-Fretcit-kNN

Accu. Recall Preci. Accu. Recall Preci. Accu. Recall Preci. Accu. Recall Preci.

.947 .939 1.00 .895 1.00 .500 .842 .250 .250 .895 .500 .500

.868 .815 1.00 .605 1.00 .167 .658 .667 .143 .842 .667 .286

.816 .862 .893 .789 .429 .429 .842 .429 .600 .895 .714 .714

.789 .500 .250 .921 1.00 .917 .842 .909 .909 .816 .848 .933

.684 .333 .091 .711 .926 .735 .711 .741 .833 .789 .926 .806

.711 .571 .333 .816 1.00 .806 .816 .966 .824 .842 .966 .848

.711 .313 1.00 .737 .875 .636 .711 .625 .667 .816 .813 .765

.658 .350 1.00 .632 .800 .615 .816 .800 .842 .711 .600 .800

.553 .900 .545 .632 .667 .600 .684 .333 1.00 .711 .444 .889

.749 .620 .679 .749 .855 .601 .769 .636 .674 .813 .720 .727
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